Shell topology optimization using the layered artificial material model

Author(s):  
S. J. Lee ◽  
J. E. Bae ◽  
E. Hinton
Author(s):  
James M. Gibert ◽  
Georges M. Fadel

This paper provides two separate methodologies for implementing the Voronoi Cell Finite Element Method (VCFEM) in topological optimization. Both exploit two characteristics of VCFEM. The first approach utilizes the property that a hole or inclusion can be placed in the element: the design variables for the topology optimization are sizes of the hole. In the second approach, we note that VCFEM may mesh the design domain as n sided polygons. We restrict our attention to hexagonal meshes of the domain while applying Solid Isotropic Material Penalization (SIMP) material model. Researchers have shown that hexagonal meshes are not subject to the checker boarding problem commonly associated with standard linear quad and triangle elements. We present several examples to illustrate the efficacy of the methods in compliance minimization as well as discuss the advantages and disadvantages of each method.


Author(s):  
Daeyoon Jung ◽  
Hae Chang Gea

To accommodate the dual objectives of many engineering applications, one to minimize the mean compliance for the stiffest structure under normal service condition and the other to maximize the strain energy for energy absorption during excessive loadings, topology optimization with a multi-material model is applied to the design of energy absorbing structure in this paper. The effective properties of the three-phase material are derived using a spherical micro-inclusion model. The dual objectives are combined in a ratio formation. Numerical examples from the proposed method are presented and discussed.


2016 ◽  
Vol 140 (4) ◽  
pp. 3430-3430
Author(s):  
Takashi Yamamoto ◽  
Yuki Noguchi ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

Author(s):  
Aravind Alwan ◽  
G. K. Ananthasuresh

In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.


Author(s):  
Sergey Shaposhnikov ◽  
◽  
Yevgeny Kishov ◽  
Lyubov Zimnyakova ◽  
◽  
...  

Object of the research is a bracket of solar sensor mounting of spacecraft. Goal of the research is to reduce mass of the spacecraft bracket subject to strength and thermal resistance considerations. Mass reduction is carried using topology optimization based on SIMP-material model (Solid Isotropic Material with Penalization). Optimization problem statement is compliance(or strain energy) minimization subject to volume constraint. For strength and thermal analysis finite element method is used implemented in Ansys Workbench 18.2 software. As result of topology optimization, a material distribution data inside a design domain is obtained for different volume fractions. Based on that result new CAD-model has been developed using Siemens NX software which taking into account manufacturing constraints and providing manufacturing of the designed part using machining. Structural analysis performed for two load cases corresponds to launch regime and maximum lateral acceleration has shown that optimized structure has sufficient strength. Thermal analysis performed in Steady State Thermal software module has shown that thermal resistance requirement also met. As result of proposed research bracket mass reduction of 2.5 times has been achieved. Directions of future work has been outlined. Improvement of proposed method may consist from incorporating of coupled thermal-structure analysis into topology optimization process.


Author(s):  
Juliano F. Gonçalves ◽  
Emílio C. N. Silva

A topology optimization (TO) approach is used to reconstruct P-wave velocity models with sharp interfaces. The concept of material model (interpolation), usually applied in TO to design structures and multi-physics devices, is explored in this work to solve this inverse problem. An adaptive interpolation rule is proposed to deal with the reconstruction problem as a transition from a single- to a multi-material approach combining the Solid Isotropic Material with Penalization (SIMP) and peak function material models. Data collected during the optimization process is used to find material candidates by means of a curve fitting strategy based on generalized simulated annealing (GSA), if this information is not available. The numerical analysis is carried out using a finite element (FE) approach in the frequency domain. Both forward and adjoint problems are solved aided by an open source Domain-Specific Language (DSL) framework and automated derivation tool, while the optimization problem is solved by using a BFGS algorithm. Numerical results for 2D examples demonstrated that proposed material interpolation can lead to solutions with sharper interfaces and improved resolution without including any type of regularization or extra constraint in the optimization problem.


Sign in / Sign up

Export Citation Format

Share Document